Thursday, August 27, 2009

Microwave oven

Cooking food with microwaves was discovered accidentally in the 1940s. Percy Spencer, a self-taught engineer, was building magnetrons for radar sets with the company Raytheon. He was working on an active radar set when he noticed that a peanut chocolate bar he had in his pocket started to melt. The radar had melted his chocolate bar with microwaves. The first food to be deliberately cooked with Spencer's microwave was popcorn, and the second was an egg, which exploded in the face of one of the experimenters.To verify his finding, Spencer created a high density electromagnetic field by feeding microwave power into a metal box from which it had no way to escape. When food was placed in the box with the microwave energy, the temperature of the food rose rapidly.
http://www.fehd.gov.hk/safefood/report/microwave/microwave_02_500.jpg
Basic microwave ovens heat food quickly and efficiently, but do not brown or bake food in the way conventional ovens do. This makes them unsuitable for cooking certain foods, or to achieve certain effects. Additional kinds of heat sources can be added to microwave packaging, or into combination microwave ovens, to add these additional effects
In the 1960s, Litton bought Studebaker's Franklin Manufacturing assets, which had been manufacturing magnetrons and building and selling microwave ovens similar to the Radarange. Litton then developed a new configuration of the microwave, the short, wide shape that is now common. The magnetron feed was also unique. This resulted in an oven that could survive a no-load condition indefinitely. The new oven was shown at a trade show in Chicago, and helped begin a rapid growth of the market for home microwave ovens. Sales volume of 40,000 units for the US industry in 1970 grew to one million by 1975. Market penetration in Japan, which had learned to build less expensive units by re-engineering a cheaper magnetron, was faster.

Microwave ovens are generally used for time efficiency in both industrial applications such as restaurants and at home, rather than for cooking quality, although some modern recipes using microwave ovens rival recipes using traditional ovens and stoves. Professional chefs generally find microwave ovens to be of limited usefulness because browning, caramelization, and other flavour-enhancing reactions cannot occur due to the temperature range.On the other hand, people who want fast cooking times can use microwave ovens to prepare food or to reheat stored food (including commercially available pre-cooked frozen dishes) in only a few minutes. Microwave ovens are also useful for the ease in which they can perform some traditionally cumbersome kitchen tasks, such as softening butter or melting chocolate. Popcorn is one example of a very popular item with microwave oven users.

A consideration for rating the efficiency of a microwave oven is to assess how much energy is wasted by using other forms of cooking. For example, when heating water for a coffee, a microwave oven heats just the mugful of water itself. When using a kettle, an element heats the kettle itself plus the water plus any extra water which is then left unused in the kettle. Depending upon the size of the kettle and the amount of excess water, the efficiency of microwave ovens can be quite comparable. Cooking in conventional ovens entails heating the internal structure of the oven to cooking temperature and, additionally, it involves maintaining that temperature against convective and radiative losses of heat for a longer time than is usual with a microwave oven. The efficiencies of conventional cooking methods can be difficult to quantify but tend to be lower.

http://www.fsis.usda.gov/OA/pubs/cfg/Color/jpg/10-microwave.jpg
Food and cookware taken out of a microwave oven is rarely much hotter than 100 °C (212 °F). Cookware used in a microwave oven is often much cooler than the food because the cookware is transparent to microwaves; the microwaves heat the food directly and the cookware is indirectly heated by the food. Food and cookware from a conventional oven, on the other hand, are the same temperature as the rest of the oven; a typical cooking temperature is 180 °C (360 °F). That means that conventional stoves and ovens can cause more serious burns.

Due to this phenomenon, microwave ovens set at too-high power levels may even start to cook the edges of the frozen food, while the inside of the food remains frozen. Another case of uneven heating can be observed in baked goods containing berries. In these items, the berries absorb more energy than the drier surrounding bread and also cannot dissipate the heat due to the low thermal conductivity of the bread. The result is frequently the overheating of the berries relative to the rest of the food. The low power levels which mark the "defrost" oven setting are designed to allow time for heat to be conducted from areas which absorb heat more readily to those which heat more slowly. More even heating will take place by placing food off-centre on the turntable tray instead of exactly in the centre.

DISC BRAKE TECH.


A brake disc, usually made of cast iron or ceramic composites is connected to the wheel and/or the axle.Disk brake is a device for slowing or stopping the rotation of a wheel.Friction causes the disc and attached wheel to slow or stop. Brakes (both disc and drum) convert friction to heat, but if the brakes get too hot, they will cease to work because they cannot dissipate enough heat.



Modern-style disc brakes first appeared on the low-volume Crosley Hotshot in 1949, although they had to be discontinued in 1950 due to design problems.Chrysler's Imperial also offered a type of disc brake from 1949 through 1953, though in this instance they were enclosed with dual internal-expanding, full-circle pressure plates. Reliable modern disc brakes were developed in the UK by Dunlop and first appeared in 1953 on the Jaguar C-Type racing car.
Disc brakes offer be
tter stopping performance than comparable drum brakes, including resistance to "brake fade" caused by the overheating of brake components, and are able to recover quickly from immersion (wet brakes are less effective). Unlike a drum brake, the disc brake has no self-servo effect and the braking force is always proportional to the pressure placed on the braking pedal or lever.

Disc brakes were most popular on sports cars when they were first introduced, since these vehicles are more demanding about brake performance. Discs have now become the more common form in most passenger vehicles, although many (particularly light weight vehicles) use drum brakes on the rear wheels to keep costs and weight down as well as to simplify the provisions for a parking brake. As the front brakes perform most of the braking effort, this can be a reasonable compromise.The design of the disc varies somewhat. Some are simply solid cast iron, but others are hollowed out with fins or vanes joining together the disc's two contact surfaces (usually included as part of a casting process). This "ventilated" disc design helps to dissipate the generated heat and is commonly used on the more-heavily-loaded front discs.

Discs may also be slotted, where shallow channels are machined into the disc to aid in removing dust and gas. Slotting is the preferred method in most racing environments to remove gas, water, and de-glaze brake pads. Some discs are both drilled and slotted. Slotted discs are generally not used on standard vehicles because they quickly wear down brake pads; however, this removal of material is beneficial to race vehicles since it keeps the pads soft and avoids vitrification of their surfaces.
New technology now allows smaller brake systems to be fitted to bicycles, mopeds and now even mountain bikes. The market for mountain bike disc brakes is very large and has huge variety, ranging from simple, mechanical (cable) systems, to highly expensive and also powerful, 6-pot hydraulic disc systems, commonly used on downhill racing bikes. Improved technology has seen the creation of the first vented discs for use on mountain bikes. The vented discs are similar to that seen on cars and have been introduced to help prevent heat fade on fast alpine descents. The first use of disc brakes on mountain bikes utilized mechanical braking systems which did not offer solid braking power, which is why disc brakes were not popular among mountain bikers until hydraulic disc brakes were presented. Most mountain bike brake rotors are made from stainless steel and are very thin. Some use a two-piece floating rotor style, and some lightweight rotors are made from aluminum.

A hybrid electric vehicle (HEV) is a hybrid vehicle that combines a conventional internal combustion engine propulsion system with an electric propulsion system. The presence of the electric powertrain is intended to achieve better fuel economy than a conventional vehicle. A hybrid electric vehicle is also a form of electric vehicle; a variety of types of HEV exist, and the degree to which they function as EVs varies as well. The most common form of HEV is the hybrid electric car, an automobile driven by a gasoline internal combustion engine (ICE) and electric motors powered by batteries.


The first gasoline-electric hybrid car was released by the Woods Motor Vehicle Company of Chicago in 1917. The hybrid was a commercial failure, proving to be too slow for its price, and too difficult to service. The hybrid-electric vehicle would not become widely available until the release of the Toyota Prius in Japan in 1997, followed by the Honda Insight in 1999. While initially perceived as unnecessary due to the low cost of gasoline, worldwide increases in the price of petroleum caused many automakers to release hybrids in the late 2000s; they are now perceived as a core segment of the automotive market of the future. Worldwide sales of hybrid vehicles produced by Toyota reached 1.7 million vehicles in January 2009. The second-generation Honda Insight was the top-selling vehicle in Japan in April 2009, marking the first occasion that an HEV has received the distinction. American automakers have made development of hybrid cars a top priority.

A more recent working prototype of the HEV was built by Victor Wouk (one of the scientists involved with the Henney Kilrowatt, the first transistor-based electric car). Wouk's work with HEVs in the 1960s and 1970s earned him the title as the "Godfather of the Hybrid". Wouk installed a prototype hybrid drivetrain (with a 16 kW electric motor) into a 1972 Buick Skylark provided by GM for the 1970 Federal Clean Car Incentive Program, but the program was stopped by the United States Environmental Protection Agency (EPA) in 1976 while Eric Stork, the head of the EPA at the time, was accused of a prejudicial coverup.



The varieties of hybrid electric designs can be differentiated by the structure of the hybrid vehicle drivetrain, the fuel type, and the mode of operation.
In 2007, several automobile manufacturers announced that future vehicles will use aspects of hybrid electric technology to reduce fuel consumption without the use of the hybrid drivetrain. Regenerative braking can be used to recapture energy and stored to power electrical accessories, such as air conditioning. Shutting down the engine at idle can also be used to reduce fuel consumption and reduce emissions without the addition of a hybrid drivetrain. In both cases, some of the advantages of hybrid electric technology are gained while additional cost and weight may be limited to the addition of larger batteries and starter motors. There is no standard terminology for such vehicles, although they may be termed mild hybrids.
The 2000s saw development of plug-in hybrid electric vehicles (PHEVs), which can be recharged from the electrical power grid and do not require conventional fuel for short trips. The Renault Kangoo was the first production model of this design, released in France in 2003.