Saturday, March 8, 2008

How was the Phoenix Mission born?

In the mid to late ’90s, at Dan Goldin’s insistence, what was then called the Human Exploration program at HQ and the Science Office put together a joint mission to Mars scheduled for launch in 2001. It was a lander mission based on a second copy of the Mars Polar Lander (scheduled for 1998). It had an interesting payload that included instruments selected for relevance to human exploration (including MECA and an oxygen production unit). Dr. Chris McKay had been on the committee that had helped develop the plan for this mission and was a supporter of the mission and the connection to human exploration. Dr. Chris McKay had no direct involvement in any of the instruments selected. None of the instruments on which Dr. Chris McKay was a P.I. or a Co-I. were selected.

When Polar Lander crashed in 1998, NASA HQ understandably canceled the 2001 mission, since it was based on the same lander.

Forward to 2002 and the first call for ideas for a Scout mission to Mars. NASA held a workshop in Pasadena to hear ideas for Scout missions and promised to provide seed funding for a few selected ideas.

Carol Stoker and
Dr. Chris McKay thought it would be useful to push the 2001 lander concept. We proposed a Scout mission called Ameba. Here is our summary:
“Ameba is an integrated lander mission that would complement the 2007 lander to investigate the chemical, geological and biological properties of the Martian dust characterize the environment on Mars, and collect data relevant to future robotic and human exploration mission. The existing 2001 lander and its existing soil-analysis instruments form the baseline payload. The following basic questions will be answered by Ameba at low cost and with reduced mission risk: Are there any indications of carbon chemistry and oxidants relevant to life? Are there geological signs that Mars had significant quantities of surface water, or hydrothermal activity? What are the mineralogical and mechanical properties of the dust? How will the soil interact with living organisms? What are the radiation and electrostatic properties of the environment that may be detrimental to life?”

Peter Smith and Mike Hecht were Co-I’s, NASA Ames was the lead institution and would manage the mission, and Dr. Chris McKay was the P.I. At the time of this review of Scout ideas, the word within NASA was HQ would “never let the 2001 lander fly.” Many people thought they were wasting our time trying to reuse that hardware and those instruments.

We were not selected for seed funding at this point, but NASA Ames agreed to provide us with in-house support to develop a proposal for the real Scout competition.

However, soon after the real Scout competition started it was clear that HQ was deciding that essentially all planetary missions would have to be managed by JPL. (In fact the four Scouts selected a year later for further study were all JPL managed). In light of this, Carol and Dr. Chris McKay had a meeting to review the prospects for Ameba and concluded that it had no chance of being selected with an Ames lead. We (correctly) concluded that the only way the 2001 lander would fly again if it was proposed with a highly qualified and experienced member of the original 2001 team as P.I. and with JPL as the managing institution. Peter Smith was the obvious choice. We both know Peter well and we just called him up and had a three-way teleconference, and Peter agreed to be the P.I. Peter did several important things that made the proposal successful: He steered the science rationale into line with the selection criterion combining parts of the 2001 and 1998 landers, he worked effectively with the instrument teams and JPL, and he presented the mission to HQ. The rest, as they say, is history.

Phoenix - Scouting for Water on the Red Planet

Phoenix is a robotic spacecraft that will be used for a space exploration mission to Mars. The scientists conducting the mission will use instruments aboard the Phoenix lander to search for environments suitable for microbial life on Mars, and to research the history of water on the red planet. Phoenix is scheduled to launch in August 2007 and land on Mars in May 2008. The multiagency program is headed by the Lunar and Planetary Laboratory at the University of Arizona, under the direction of NASA. The program is a partnership of universities from the U.S., Canada, Switzerland and Germany; NASA; the Canadian Space Agency; and the aerospace industry. Phoenix will land in the planet’s water-ice-rich northern polar region and use its robotic arm to dig into the arctic terrain.

NASA selected the University of Arizona to lead the Phoenix mission back in August 2003, hoping it would be the first in a new line of smaller, low-cost “Scout” missions in the agency’s exploration of Mars (the cost is about $75 million cheaper than the Spirit/Opportunity rovers, and less than a third the cost of the Viking landers of 1976). The selection was the result of an intense two-year competition with proposals from other institutions. The $325-million NASA award is more than six times larger than any other single research grant in University of Arizona history.


The Mission has a collaborative approach to space exploration. As the very first of NASA’s Mars Scout class, Phoenix combines legacy and innovation in a framework of a true partnership: government, academia and industry. Scout-class missions are led by a scientist, known as a Principal Investigator (PI), whose role is to manage all the scientific data gathered by the spacecraft and lead the mission’s technical and scientific teams.

Pathfinder Airbags in a test
Pathfinder Airbags in

Phoenix is a partnership of universities, NASA centers and the aerospace industry. The science instruments and operations will the University of Arizona’s responsibility. The Jet Propulsion Laboratory in Pasadena, California, operated under contract by Caltech for NASA, will manage the project and provide mission design and control. Lockheed Martin Space Systems in Denver, Colorado, will build and test the spacecraft. The Canadian Space Agency will provide a meteorological station, including an innovative laser-based atmospheric sensor. The co-investigator institutions include Malin Space Science Systems, Max Planck Institute for Solar System Research, NASA Ames Research Center, NASA Johnson Space Center, Optech Incorporated and SETI Institute, to name just a few.

The lander will land the same way the Viking landers did, slowed primarily by landing rockets, shifting from a recent trend of using air bags for softening landings, as was demonstrated in the Pathfinder, Spirit and Opportunity missions, as well as Europe’s ill fated probe—the Beagle 2. In 2007, a report was filed at the American Astronomical Society by Washington State University professor Dirk Schulze-Makuch that made a claim that rocket exhaust contaminated the Viking landing sites, potentially killing any life that may have been there. The hypothesis was made long after any modifications to Phoenix could be made without delaying the mission significantly. One of the investigators on the Phoenix mission, NASA astrobiologist Chris McKay merely stated that the report “piqued his interest.” Experiments conducted by Nilton Renno, mission co-investigator from the University of Michigan, and his students, have specifically looked at the how much surface dust will be kicked up when Phoenix lands. It was determined, however, that the robotic arm could reach undisturbed soil, for sampling and analyzing.

The Future of BMI

Utah's electrode array (Credit: University of Utah)
Utah's electrode array

One of the next challenges in the field of BMI prosthetics is making them feel like normal limbs. A normal limb has a sense of touch and proprioception, the process by which sensory feedback to the brain transmits the location and position of the body's muscles, allowing us to be aware of the arm’s position without having to look. This is accomplished by an array of receptors in the muscles and joints, as well as mechanical receptors in the skin, that enable us to know when we are touching an object. The next generation of prosthetic arms will have proprioception and “feeling,” generating feedback pulses to the brain or to nerve endings that will result in their bearers having an almost natural feel to their bionic limb.

It seems that today, more than ever, BMIs that can operate bionic prosthetics are within our grasp. The Defense Advanced Research Project Agency (DARPA) set an ambitious goal of releasing a fully functioning bionic arm for Food and Drug Administration (FDA) approval by 2009. This arm will have far more degrees of freedom than any other available prosthetic, and in 2011 DARPA is planning to release a prosthetic that has nearly all the motion ability and dexterity of a normal limb, including touch and proprioception. Theoretically, an amputee using this arm will be able to play the piano.

Normann artificial vision (Credit John A. Moran eye center, University of Utah)
Normann artificial vision

A future type of BMI for patients with paralyzed limbs or spinal cord injuries will send efferent motor impulses directly to the muscles of the limb. Unlike the situation of amputees, in spinal cord injuries, the muscles are functional but nerve impulses aren’t able to get there. A muscle-stimulating BMI will be able to bypass the severed point and directly innervate the muscle through small electric currents. Robotic arms and hands approaching the agility and sensitivity of the human hand already exist and have been covered recently by TFOT.

BMI technologies are not only confined to prosthetic and paralyzed limbs. In the future, BMIs may allow blind people to see using an artificial picture-capturing device, much like a camera. Several methods for visual prosthetics have already been used successfully with patients. These methods use a computer chip implanted on the retina that is fed by a miniature camera on a patient's glasses. The chip stimulates the optic nerves, transmitting a picture to the brain. Devices used today allow patients to see vague shapes or distinguish light from dark, but future devices, such as the Cortical Visual Prosthesis being developed allow improved synthetic vision.

Professor Eilon Vaadia (Credit: Hebrew University)
Professor Eilon Vaadia

The John A. Moran Eye Center at the University of Utah has developed a chip , but it could also be applied to other BMI applications. The chip contains an array of electrodes that can be individually stimulated, are small enough to be inserted into brain tissue without much damage, and at the same time are strong enough to withstand the insertion procedure. Some of these implants have been successfully implanted in blind people with positive results. Future generations of these types of devices will lead to improved resolution, and ultimately restoration of sight to the blind.

What we are witnessing today is only the tip of the iceberg of the great potential BMIs hold for medical, military, recreation, and other purposes in the future. BMI research is on the threshold where science meets science fiction. There will surely be exciting news emerging from this field in the very near future.

Noninvasive Brain-Machine Interface (BMI)

BMIs can be divided into two main groups: invasive and noninvasive. Noninvasive BMIs rely on reading the brain's activity without actually piercing the brain surface. The EEG is one of the earliest noninvasive BMIs, measuring the combined activity of massive groups of brain neurons through voltage differences between different parts of the brain. The EEG is performed by placing approximately 20 electrodes on the scalp; these electrodes are connected by wires to an amplifier, through which the signal is converted to a digital reading, which can then be filtered by a computer to remove any artificial interference. Once connected to the EEG, the subject can be shown different stimuli, and the brain’s electrical patterns in response to the stimuli can be studied.

Some EEG BMIs rely on the subject’s ability to develop control of their own brain activity using a feedback system, whereas others use algorithms that recognize EEG patterns that appear with particular voluntary intentions. Virtual-reality systems have been used to supply patients with efficient feedback systems, and subjects have been able to navigate through a virtual-reality setting by imagining themselves walking or driving. These systems can also be used for gaming TFOT.

EEG- a non-invasive method of establishing a BCI. Subjects are hooked into a virtual reality setting while their brain activity is monitored by an EEG. Subjects train using the biofeedback setting to manipulate the virtual reality using their thoughts alone (Credit: Rochester institute of technology)

EEG-based BMIs have been implemented to help patients suffering from body paralysis, such as the motor-neuron disease ALS. By generating certain brain patterns that are then read by the EEG, patients are able to control a computer cursor and indicate their intentions, and thereby communicate with the external world. EEGs are also reported to have enabled severely disabled tetraplegic patients grasp an object using a paralyzed hand. In these cases, the patient generated certain brain waves that were detected by an EEG and converted into external electrical muscle stimulation, which allowed the contraction of the muscles and movement of the paralyzed limb.

EEGs have many shortcomings, due to much overlapping of electrical activity in the brain as well as electrical artifacts. To achieve better resolution, electrodes can be inserted between the skull and the brain, without piercing the brain tissue, and can allegedly achieve a higher resolution of brain activity. Although noninvasive BMI techniques can improve the quality of life for some disabled patients by allowing them a limited and slow capacity of communication, they are unlikely to hold the solution for allowing patients to perform complex tasks that involve multiple degrees of freedom, such as controlling a robotic arm. These activities will be more likely achieved through invasive techniques.

Brain-Machine Interface

The majority of motor functions in our body are driven by electrical currents originating in the brain motor cortex and conducted through the spinal cord and peripheral nerves to the muscles, where the electrical impulse is converted to motion by the contraction and retraction of specific muscles. For example, to bend the arm at the elbow joint, the biceps muscle contracts and the triceps relaxes. This seemingly simple movement is the result of the cumulative activity of many brain cells in the area of the cortex in charge of arm movement. The neurons, following a cognitive decision to bend the arm, generate an electric impulse through the peripheral nerves, causing the correct muscles to contract or relax.

The term used for neuronal activity is "action potential." Action potential occurs when an electric impulse shoots through the long shaft of the neuron, called the axon. Each neuron has one axon but is connected to many other neurons through chemical connections called synapses, and can influence other neurons or be influenced itself by the activity of adjacent neurons, creating an extremely complex network of neural cells.

The action potential in a neuron can be measured by inserting an extremely thin electrode adjacent to the axon, where the passing electric current can be detected. The electrode measures the neuron’s rate of action potential in one second, thus measuring its activity.

Most neuroscientists agree that the rate or frequency of the firing constitutes a sort of code for brain activity. For instance, if a certain group of neurons fires action potentials at a high frequency together, the result is the movement of a limb.

The Basis of Palm Vein Technology

An individual first rests his wrist, and on some devices, the middle of his fingers, on the sensor's supports such that the palm is held centimeters above the device's scanner, which flashes a near-infrared ray on the palm. Unlike the skin, through which near-infrared light passes, deoxygenated hemoglobin in the blood flowing through the veins absorbs near-infrared rays, illuminating the hemoglobin, causing it to be visible to the scanner. Arteries and capillaries, whose blood contains oxygenated hemoglobin, which does not absorb near-infrared light, are invisible to the sensor. The still image captured by the camera, which photographs in the near-infrared range, appears as a black network, reflecting the palm's vein pattern against the lighter background of the palm.

An individual's palm vein image is converted by algorithms into data points, which is then compressed, encrypted, and stored by the software and registered along with the other details in his profile as a reference for future comparison. Then, each time a person logs in attempting to gain access by a palm scan to a particular bank account or secured entryway, etc., the newly captured image is likewise processed and compared to the registered one or to the bank of stored files for verification, all in a period of seconds. Numbers and positions of veins and their crossing points are all compared and, depending on verification, the person is either granted or denied access.

How Secure is the Technology?

On the basis of testing the technology on more than 70,000 individuals, Fujitsu declared that the new system had a false rejection rate of 0.01% (i.e., only one out of 10,000 scans were incorrect denials for access), and a false acceptance rate of less than 0.00008% (i.e., incorrect approval for access in one in over a million scans). Also, if your profile is registered with your right hand, don't log in with your left - the patterns of an individual's two hands differ. And if you registered your profile as a child, it'll still be recognized as you grow, as an individual's patterns of veins are established in utero (before birth). No two people in the world share a palm vein pattern - even those of identical twins differ (so your evil twin won't be able to draw on your portion of the inheritance!)

Potential Applications


The new technology has many potential applications (some of which are already in use) such as an ultra secure system for ATMs and banking transactions, a PC, handheld, or server login system, an authorization system for front doors, schools, hospital wards, storage areas, and high security areas in airports, and even facilitating library lending, doing away with the age-old library card system. Fujitsu is planning to continue the development of the palm vein technology, shrinking the scanner to fit a mobile phone. Fujitsu hopes that its success might usher in a new age in personal data protection techniques, which is especially important when sales of Smartphones and other handhelds are skyrocketing.

Palm Vein Technology

How secure are your assets? Can your personal identification number be easily guessed? As we increasingly rely on computers and other machines in our daily lives, ensuring the security of personal information and assets becomes more of a challenge. If your bank card or personal data falls into the wrong hands, others can profit at your expense. To help deal with this growing problem, Fujitsu has developed a unique biometric security technology that puts access in the palm of your hand and no one else's.

Fujitsu's palm vein authentication technology consists of a small palm vein scanner that's easy and natural to use, fast and highly accurate. Simply hold your palm a few centimeters over the scanner and within a second it reads your unique vein pattern. A vein picture is taken and your pattern is registered. Now no one else can log in under your profile. ATM transactions are just one of the many applications of this new technology.

Fujitsu's technology capitalizes on the special features of the veins in the palm. Vein patterns are unique even among identical twins. Indeed each hand has a unique pattern. Try logging in with your left hand after registering with your right, and you'll be denied access. The scanner makes use of a special characteristic of the reduced hemoglobin coursing through the palm veins — it absorbs near-infrared light. This makes it possible to take a snapshot of what's beneath the outer skin, something very hard to read or steal.

Besides the high accuracy of a false rejection rate of 0.01% and a false acceptance rate of less than 0.00008 %(as of February, 2005), Fujitsu's contactless palm vein authentication offers a range of advantages over other biometric technologies.

"Fingerprint scans and face recognition ID methods are associated with the police by some people on a psychological level," says Shigeru Sasaki, director of Fujitsu's Media Solutions Laboratory. (Interview date: Feb 2nd, 2005) "In public areas, others don't like the thought of touching what everyone else has touched for sanitary reasons. This is why we created a contactless palm vein scanner."

"Fingerprint scans and face recognition ID methods are

The near-infrared rays in the palm vein scanner have no effect on the body when scanning. To protect the privacy and personal information of the user, the registered biometric information itself can be stored in bank cards. Bank of Tokyo-Mitsubishi ATMs in Japan are already equipped with palm vein scanners developed by Fujitsu. Users access their accounts by having a scan of their palm compared to a pre-registered scan stored on their bank card. This is expected to help reduce the growing cases of bank card thefts and fraudulent financial transactions.

Amid the heightened security climate in recent years and fears of terrorism, there has been a surge in demand for accurate biometric authentication methods. Meanwhile, recent bank card forgery cases in Japan have numbered in the hundreds, involving dozens of financial institutions and hundreds of millions of yen. Victims are usually unaware their money is being stolen until it's too late.

Bank card security isn't just the responsibility of the end user. Financial institutions around the world are being urged to take a greater role in preventing bank card fraud by improving card security. Japan's Financial Services Agency, for instance, has called on banks to implement added security measures such as introducing biometric identification systems.

Fujitsu's palm vein authentication technology will help stop this new wave of crime, and can also be adapted for use in access to secure areas as well as online transactions, customer identification and claiming baggage.